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EXECUTIVE SUMMARY 

Transit signal priority (TSP) is a critical operational strategy that can be applied to improve the 

performance of transit vehicles on the road. However, this control strategy generally causes 

adverse effects on other traffic, which limits its widespread adoption. Connected and 

autonomous vehicles (CAVs) have the ability to exchange traffic data and vehicle information in 

real-time with other vehicles and infrastructure in their vicinity, which can certainly facilitate the 

development of TSP control strategies. As a result, research on TSP combined with CAV 

technology has increasingly gained a lot of attention.  

This study evaluates the traffic performance of two general TSPCV control strategies, namely 

actuated TSP with CV (connected vehicle) and optimized TSP with CV, and compares them with 

two conventional signal control strategies, i.e., actuated signal control without TSP, and actuated 

signal control with TSP. Simulation experiments based on a signalized intersection in Charlotte, 

North Carolina, are conducted to compare the traffic performance of proposed control strategies 

under different market penetration rates, traffic demand, and bus arrival frequency conditions.  

Results indicate that the proposed Genetic Algorithm (GA) optimization control strategy can 

reduce the average bus delay by 24.50% while minimizing the adverse impact on competing 

traffic under high traffic demand conditions. Fully actuated control with TSP using CV has the 

best performance in terms of average delay under low traffic demand conditions. In addition, the 

fully actuated with TSP using CV control strategy only requires the bus to be equipped with CV 

technology, which can be easily achieved due to its low cost. The proposed optimization control 

algorithm can provide certain priority to buses even at low rates of CV market penetration. The 

sensitivity analysis shows that the proposed optimization control algorithm is not very sensitive 

to either the bus occupancy or bus arrival frequency. The results of this study will provide a solid 

and systematic reference for both researchers and practitioners to better understand, plan, design, 

and operate TSP control strategies in CAV environment. 
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Chapter 1. Introduction 

1.1. Problem Statement 

Public transportation is playing a more and more prominent role in the urban transportation 

system. Strategies that ensure transit priority can provide higher quality transit services to the 

public, which can greatly help in developing a more sustainable, equitable, and efficient urban 

transportation system. The implementation strategies include the formulation of policies to 

prioritize public transportation, the provision of financial subsidies for public transportation, the 

construction of high accessible public transportation system, and the granting of priority to 

transit vehicles, etc. Among them, transit signal priority (TSP) is a critical operational strategy 

that can be applied to improve the performance of transit vehicles on the road. TSP generally 

adjusts the signal plan to ensure priority for transit vehicles at intersections, arterials, or networks 

(Skabardonis, 2000). However, this control strategy generally causes adverse effects on other 

traffic, which limits its widespread adoption. 

It is widely accepted that the development of Connected and Autonomous Vehicle (CAV) 

technology will have a profound impact on the transportation systems. Numerous studies have 

been conducted to investigate the impact of CAV technology development. At the macro level, 

the economic, social and environmental impacts of CAVs development have been studied, while 

at the micro level, research mainly focused on the impact of various specific CAV technologies. 

The results showed that the development of CAVs technology can significantly improve the 

performance of transportation systems, thus bringing us a better world. The most important 

feature of CAV technology is real-time traffic data exchange, which also facilitates the 

development of TSP control strategies. Advances in TSP that benefit from CAV technology have 

gained a lot of attention. Hill and Garrett (2011) stated that Transit Signal Priority with 

Connected Vehicle (TSPCV) is a key application of CAV technology that will greatly enhance 

mobility and safety. The USDOT has also included TSPCV in its list of high-priority 

applications and development approach. With the benefit of CAV technology, more progress can 

be made in improving TSP efficiency. 

This study evaluates the traffic performance of two general TSPCV control strategies, 

namely actuated TSP with CV and optimized TSP with CV, and compares them with two 

conventional signal control strategies, i.e., actuated signal control without TSP, and actuated 

signal control with TSP. Simulation experiments based on a real-world signalized intersection 

are conducted to compare the traffic performance of proposed control strategies under different 

market penetration rates, traffic demand, and bus arrival frequency conditions. The results of this 

study will provide a systematic reference for both researchers and practitioners to better 

understand, plan, design, and operate TSP control strategies in CAV environment. 
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1.2. Objectives 

The objectives of this study are to: 

1) Conduct a comprehensive literature review on CAV technologies and TSP control 

strategies. 

2) Build a signalized intersection based on real-world configurations in the simulation 

environment. 

3) Develop different simulation scenarios considering the TSP control strategies, and 

CAV market penetration rates, etc. 

4) Conduct simulation experiments and collect the traffic performance data. 

5) Analyze and discuss the simulation results in different scenarios. 

1.3. Report Overview 

The report is organized as follows. A comprehensive literature review is presented in 

Chapter 2. The methodology used to minimize the total person delay is described in Chapter 3. 

Chapter 4 details the configuration of studied intersection and the settings of different scenarios. 

The results that are obtained from conducting simulation experiments are analyzed and discussed 

in Chapter 5. Finally, in Chapter 6, the conclusions from this study are summarized and the 

future work are suggested. 
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Chapter 2. Literature Review 

2.1. Introduction 

This chapter provides a comprehensive review of the development of CAV and intersection 

management. Furthermore, the development of TSP and the latest state-of-the-art and state-of-

the-practice in the field of TSP control are also reviewed.  

The following sections are organized as follows. Section 2.2 presents the background of 

CAV technologies, such as definitions, taxonomies, impacts, and the prospects. Section 2.3 

discusses the existing research and practices on intersection management. The development of 

TSP research and the studies on the integration of TSP and CAV are reviewed in section 2.4. 

Finally, a summary of the chapter is given in section 2.5. 

2.2. Background of Connected and Autonomous Vehicle 

2.2.1. Definition of Connected and Autonomous Vehicle 

2.2.1.1. Connected Vehicle (CV)  

Connected vehicles (CVs) refer to vehicles that are equipped with communication 

technologies (such as cellular technology), which enable them to communicate within a certain 

range with other vehicles on the road (V2V), roadside infrastructure (V2I), and other traffic 

participants (V2X) (Guo et al., 2019). V2V technology enables CVs to communicate with 

surrounding CVs for applications such as cooperative collision warnings, hazard alerts, and 

cooperative collision avoidance. V2I technology enables CVs to exchange detailed traffic 

information with nearby infrastructure, such as speed, acceleration/deceleration, volume, queue 

length, and signal phase and timing (SPaT). V2X enables the ability to transfer information with 

every entity around a CV that may affect the CV.  

2.2.1.2. Automated Vehicle (AV)  

NHTSA defines an autonomous vehicle as “those in which operation of the vehicle 

occurs without direct driver input to control the steering, acceleration, and braking and are 

designed so that the driver is not expected to constantly monitor the roadway while operating in 

self-driving mode” (USDOT, 2019). With the emergence of AV technologies, different 

organizations have proposed different taxonomies. In 2013, the NHTSA introduced a 4-level 

classification for the automation level of vehicles. The Society of Automotive Engineers 

International (SAE) proposed a 6-level taxonomy in 2014. This taxonomy was adopted by 

NHTSA later in 2016 and has become the industry standard for general use (NHTSA, 2016). 
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There are six levels of vehicle automation from level 0 to level 5. Level 0 means that the 

vehicle has no automation and is fully operated by a human driver. In Levels 1 and 2, the driver 

is responsible for dynamic driving tasks (DDT), while the advanced driver assistance systems 

(ADASs) on the vehicle can sometimes assist the human driver with steering or/and 

brake/acceleration. ADASs have the potential to prevent or mitigate crashes by partially 

eliminating driver errors. In higher levels of automation, the automated driving system (ADS) 

performs the entire DDT when engaged. In Level 3, the DDT fallback-ready user needs to 

intervene when requested. On the other hand, Levels 4 and 5 of automation do not require a DDT 

fallback-ready user, and Level 5 has an unlimited operation design domain (ODD), unlike Levels 

3 and 4. An ADS is expected to eliminate driver errors in its ODD; however, disengagement 

from ADSs in Level 3 of automation can be challenging. Table 2-1 provides a summary of 

different levels of vehicle automation. The AVs discussed in this report belong to level 5. 

Table 2-1 Automation Levels and Corresponding Descriptions (SAE, 2021) 

Level Description 

L0 
No Driving Automation.  

Only warnings and momentary assistance are provided. 

L1 
Driver Assistance.  

Steering or brake/acceleration support are provided. 

L2 
Partial Driving Automation.  

Steering and brake/acceleration support are provided. 

L3 

Conditional Driving Automation.  

When conditions are not met, you must drive. Otherwise, the system can drive the 

vehicle under limited conditions. 

L4 

High Driving Automation. 

You are not required to drive under any conditions. The system can drive the vehicle 

under limited conditions. 

L5 
Full Driving Automation. 

The system can drive the vehicle under all conditions. 

 

2.2.1.3. Connected and Automated Vehicle (CAV) 

Connected and automated vehicle technology is a combination of connected technology 

and autonomous vehicle technology. CAV can be self-driving and communicate with its 

surroundings. Some examples of existing CAV technologies are active lane-keeping assistance 

(LKA), active park assistance (APA), automatic braking (ABS), blind-spot detection (BSD), 

cross-traffic alert systems (CTAS), and forward-collision warning (FCW). The development of 

CAV technologies will have a profound impact on mobility, environmental effects, and traffic 

safety. 
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2.2.2. Impacts of Connected and Autonomous Vehicles 

The impacts of CAV technology have been a hot research topic in recent years. The 

benefits of CAV technology, including improvements in safety, enhancement in mobility and 

reductions in emissions, have been widely researched and accepted.  

2.2.2.1. Safety 

In a report published by the National Highway Traffic Safety Administration (Singh, 

2018), the critical reason for 94% of the crash events was attributed to drivers. There is a general 

consensus that CAV technologies will greatly improve traffic safety by reducing or even 

eliminating human errors while driving. 

Li et al. (2017) developed and used both theoretical and experimental approaches to 

investigate the impacts of cooperative adaptive cruise control (CACC), a CAV technology, on 

improving the highway traffic safety. This study identified two modified parameters to measure 

the risk of rear-end collisions. In the theoretical approach, linear stability analysis was performed. 

In the experimental approach, several microscopic simulation experiments were conducted using 

calibrated car-following models. Each car-following model represented a human driven vehicle 

(HDV), an adaptive cruise control (ACC) vehicle, and a cooperative adaptive cruise control 

(CACC) vehicle, respectively. Results showed that the CACC system could reduce the risk of 

rear-end collisions by more than 90%. 

Bareiss et al. (2019) used a simulation software to reconstruct some selected left turn 

across path/opposite direction (LTAP/OD) crashes in the United States. They then introduced the 

intersection advanced driver assistance system (I-ADAS) into these simulated crashes and 

evaluated the performance of the system. Results showed that I-ADAS with automatic 

emergency braking could reduce 18-84% of all LTAP/OD crashes. 

Wang et al. (2020) conducted a literature review study using a meta-analysis approach to 

quantitatively assess the effectiveness of CAV technologies. Of 826 CAV-related safety impact 

papers or reports that they reviewed, 73 studies were selected using predefined criteria. The 

unbiased effectiveness of each specific CAV technologies was evaluated by applying meta-

analysis, funnel plots, and trim-and-fill method. The comprehensive safety effectiveness and 

compilation of safety effectiveness were then calculated using crash data from six countries. 

Results showed that if all the CAV technologies studied in this article were implemented, a total 

of 3.4 million crashes could be reduced each year in six countries. The comprehensive safety 

effectiveness was 54.24%, 51.55%, 48.07%, 45.36%, 44.71%, and 40.95 for India, Australia, 

USA, New Zealand, Canada, and the UK, respectively.   

Arvin et al. (2021) calibrated the simulation model using real-world data and investigated 

the safety impacts of ACC and CACC in mixed traffic with human driving vehicles at 



 

 

6 

 

intersections. An analysis of the automated vehicle (AV) crash data in California concluded that 

72.8% of the crashes occurred at the intersections and 63.8% of the crashes were rear-end 

collisions. Two surrogate safety measures, the number of longitudinal conflicts (TTC) and 

driving volatility, were applied to evaluate the simulation outcomes in this study. Results 

indicated a nonlinear safety improvement. As the ACC and CACC penetration rates increased, 

the number of conflicts and driving volatility decreased significantly. The improvement in safety 

was more significant when the ACC penetration exceeded 40%. Meanwhile, vehicles equipped 

with CACC have a better safety performance than those equipped with ACC.  

2.2.2.2. Mobility 

Shorter headways, faster reactions, and more accurate operations can be achieved by 

adopting CAV technologies. Thus, enhanced mobility can be guaranteed. 

Chen et al. (2017) developed a theoretic framework to evaluate the lane capacity in 

mixed traffic environment. AV penetration rate, micro/mesoscopic characteristics of AV and 

HDV, different lane policies such as exclusive AV and/or HDV lanes and mixed-use lanes were 

taken into account in this framework. Result showed that higher capacities can be realized by 

implementing mixed-use policies, while strict segmentation of AVs and HDVs might lead to 

lower capacity. 

Ye and Yamamoto (2018) developed a two-lane cellular automaton model to evaluate the 

possible impact of CAVs on the traffic flow. Simulations were conducted under different CAVs 

penetration rates and the impact of CAVs on road capacity was quantitatively investigated. When 

the penetration rate was below 30%, the effect of penetration rate growth on the increase rate of 

road capacity was insignificant. When the penetration rate exceeded 30%, the increase rate of 

road capacity was largely decided by the capability of the CAV. 

Shi et al. (2019) adopted the intelligent driver model (IDM) to simulate CAVs in mixed 

traffic environments under different penetration rates. Besides, a cooperative CAV lane-changing 

model with two lane-changing algorithms was developed to form more CAV platoons. 

Simulation results indicated that the capacity would increase as the penetration rate grew, and the 

peak growth rate occurred between 40% and 70% of the CAV penetration rate. 

Liu and Fan (2020) investigated the impact of CAVs on freeway capacity with a 

simulation based-method approach. Calibration was conducted using genetic algorithm to mimic 

the driving behaviors of HDVs. Different penetration rates of CAVs and different speed limits 

were considered to evaluate the freeway capacity. Results showed that freeway capacity would 

increase as the penetration rate increased. Besides, speed limits had a significant positive 

influence on freeway capacity. 
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Song et al. (2021) investigated the impacts of CAV market penetration rate (MPR) on 

different signal intersection scenarios based on simulation experiments. In this study, different 

control strategies and car following models were adopted to mimic different types of vehicles. 

Specifically, there are CAVs with the CACC system, AVs with the ACC system, AVs with IDM 

system, and HDV with IDM system. Different scenarios, such as fixed signal, gap-based 

actuated signal, and delay-based actuated signal with low, medium, and high traffic demands, 

were modeled in the simulation platform. Results showed that CACC system outperformed AVs 

with ACC/ IDM. With only a 20% MPR, significant delay drops can be observed in CACC 

system. For AVs with the ACC/IDM system, large delay drops can be observed after 60% and 80% 

MPR. 

2.2.2.3. Environment 

The impact of CAV technology in the environmental realm has been something that is 

controversial. From a microscopic perspective, there is a common consensus that CAV 

technology can improve fuel economy and reduce emissions. However, from a macroscopic 

perspective, whether the effect of CAV technology is positive remains a question. 

Wadud et al. (2016) used a coherent energy decomposition framework to analyze the 

impact of AVs on travel and energy demand and associated greenhouse gas (GHG) emissions. 

One major finding of this study was different energy efficiency and travel impacts resulting from 

different levels of automation. At relatively lower automation rates, the reduction of energy use 

resulting from energy efficiency might outweigh the increase in energy use due to increased 

travel demand. However, at a high level of automation, the energy outcomes depended on which 

effects come to dominate.  

Taiebat et al. (2019) estimated the elasticities of vehicle miles traveled (VMT) demand 

with respect to fuel and time cost under the full adoption of CAVs from a microeconomic 

perspective. The travel demand and energy use induced by adopting CAVs were taken into 

account in this research. Results indicated that a net rise in energy use was possible, especially in 

high income groups. 

Le Hong and Zimmerman (2021) investigated the impacts of CAVs development on 

emissions in metro Vancouver, Canada in 2030 and 2040. The US Environmental Protection 

Agency’s Motor Vehicle Emission Simulator (MOVES) was used to assess the emissions with 

respect to varying future vehicle kilometers traveled (VKT), transit use, fuel-type, and CAV 

market penetration rate. In the best scenario, CAVs could reduce GHG emissions by 20% 

compared with no-CAV scenario in 2040. Under the worst scenario, a 6% reduction in GHG 

emissions could be achieved.  

There are also many studies that have evaluated the impacts of CAV technology from 

multiple perspectives. Mahdinia et al. (2020) analyzed field test data of CAVs collected from the 
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Cooperative Automated Research Mobility Application (CARMA) program. Two scenarios were 

considered in this study, namely platooning and merging. Each scenario had two types of vehicle 

combinations. The safety, energy, and environmental impacts of specific CAVs technologies 

were evaluated by applying corresponding assessment methods. Compared with vehicles 

equipped with ACC, CACC equipped vehicles reduced driving volatility in a five-vehicle-

platoon from 13.6% to 29%. The volatility of the merging CACC equipped vehicle was reduced 

by 6.2% when compared with the merging human-driven vehicle. The CACC vehicles increased 

minimum values of TTC by approximately 100% to reduce the risk of rear-end collision. In the 

five-vehicle-platoon scenario, CACC technology reduced overall fuel consumption by 0.5% to 

6.7% compared with ACC, and the reduction of total emissions ranged from 3.1% to 4.9%. In 

merging scenario, the overall fuel consumption and emissions of the merging vehicle equipped 

with CACC increased by 0.54% and 4.1%, respectively, compared with the human-driven 

merging vehicle. 

Liu and Fan (2021) investigated the mobility and environmental impacts of CAVs on 

signalized intersections using the simulatio-based approach. Simulation performace indicated 

that with a 100% MPR of CAVs, vehicle delay could be reduced by up to 46.06% and emissions 

could be reduced by up to 33.47% compared with the HDV only scenario. 

Table 2-2 Literature Review on the Impacts of Connected and Autonomous Vehicles 

Research 

Perspective 
Authors Year Findings 

Safety 

 Li et al. 2017 
The CACC system could reduce the risk of rear-end 

collision by more than 90%. 

Bareiss et al.  2019 
I-ADAS with automatic emergency braking could 

reducing 18-84% of all LTAP/OD crashes. 

Wang et al. 2020 

If all the CAV technologies studied in this article 

were implemented, a total of 3.4 million crashes could 

be reduced each year in these six countries.  

Arvin et al. 2021 

The improvement in safety was more significant when 

the ACC penetration exceed 40%. Meanwhile, 

vehicles equipped with CACC have a better safety 

performance than those equipped with ACC.  

Mobility 

 Chen et al. 2017 

Higher capacities can be realized by implementing 

mixed-use policies, while strict segmentation of AVs 

and HDVs might lead to lower capacity. 

Ye and 

Yamamoto 
2018 

When penetration rate below 30%, the effect of 

penetration rate growth on the increase rate in road 

capacity is insignificant. When the penetration rate 

exceeded 30%, the increase rate of road capacity is 

largely decided by the capability of the CAV. 
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Shi et al. 2019 

The capacity would increase as the penetration rate 

grew, and the peak growth rate occurred between 40% 

and 70% of the CAV penetration rate。 

Liu and Fan 2020 

Freeway capacity will increase as the penetration rate 

increase. Besides, speed limits had a significant 

positive influence on freeway capacity. 

Song et al. 2021 

CACC system outperformed AVs with ACC/IDM. 

With only a 20% MPR, significant delay drops can be 

observed in CACC system. For AVs with the 

ACC/IDM system, large delay drops can be observed 

after 60% and 80% MPR. 

Environment 

 Wadud et al. 2016 

At relatively lower automation, the reduction of 

energy use resulting from energy efficiency might 

outweigh the increase in energy use due to increased 

travel demand. However, at a high level of 

automation, the energy outcomes depended on which 

effects come to dominate. 

Taiebat et al. 2019 
A net rise in energy use was possible, especially in 

high income groups. 

Le Hong and 

Zimmerman 
2021 

At the best scenario, CAVs could reduce GHG 

emissions by 20% compared with no-CAV scenario in 

2040. At the worst scenario, a 6% reduction in GHG 

emissions could be achieved.  

Multiple  

 Mahdinia et 

al. 
2020 

Safety: Compared with vehicles equipped with ACC, 

CACC equipped Vehicles reduced driving volatility 

in a five-vehicle-platoon from 13.6% to 29%. The 

volatility of the merging CACC equipped vehicle was 

reduced by 6.2% when compared with the merging 

human-driven vehicle. The CACC vehicles increased 

minimum values of TTC by approximately 100% to 

reduce the risk of rear-end collision. In the five-

vehicle-platoon scenario, CACC technology reduced 

overall fuel consumption by 0.5% to 6.7% compared 

with ACC.  

Environment: The reduction of total emissions ranged 

from 3.1% to 4.9%. In merging scenario, the overall 

fuel consumption and emissions of the merging 

vehicle equipped with CACC increased by 0.54% and 

4.1%, respectively, compared with the human-driven 

merging vehicle. 

Liu and Fan 2021 

Mobility: With 100% MPR of CAVs, vehicle delay 

could be reduced by up to 46.06%  

Environment: Emissions could be reduced by up to 
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33.47% compared with the HDV only scenario. 

 

2.2.3. The Outlook for Connected and Autonomous Vehicles 

CAVs have the potential to significantly change the transportation system around the 

world. With the rapid development of cutting-edge technologies, such as advanced sensor 

technology, cellular technology, big data technology, and artificial intelligence, CAV technology 

has made great progress. Newly produced vehicles in recent years were generally equipped with 

Level 1 and Level 2 automation systems. The Level 3 automation system is still under 

development and is being tested in many practical experimental projects. Moreover, it takes 

significantly more time to develop mature Level 4 and Level 5 automation systems. There are 

many studies focused on forecasting the market penetration rate of CAVs, with varying findings. 

Lavasani et al. (2016) developed Generalized Bass diffusion models for predicting the 

AV technology market penetration based on similar technologies and previous trends in the 

United States. In this study, the saturated market size was set as 75% of households who would 

purchase AV with AV sales starting at year 2025. The AV sales would be 1.3 million, 36 million 

and 83.6 million in 2030, 2040 and 2050, respectively. The AV market would be saturated in 

2059, and more than 87 million AVs would be sold. 

Bansal and Kockelman (2017) developed a simulation-based fleet evolution framework 

to predict the market penetration rate of CAVs in the United States during 2015-2045. Based on 

a US-wide survey of 2167 responses, the willingness to pay (WTP) and vehicle purchases 

decisions of Americans were measured. Results indicated that approximately 98% of U.S. 

vehicles would be equipped with emergency automatic braking (ESC) and connectivity function 

in year 2025 and 2030, respectively. In addition, the market penetration rate of vehicles with full 

driving automation would be around 24.8-87.2% in 2045, depending on the WTP and vehicle 

price. 

Talebian and Mishra (2018) predicted the adoption of CAVs using agent-based model 

coupled with the diffusion of innovations theory. A survey was conducted to demonstrate the 

applicability of the proposed approach. Results suggested that the vehicle fleet penetration rate 

would approach 100% around 2050 only if the CAV price falls significantly. In another word, 

assuming that the cost of full automation is $40,000 at 2025, this price would have to drop by 15-

20% annually to reach 100% adoption of CAV in 2050. 

Quarles et al. (2021) developed a statistical model to investigate decisions in terms of 

vehicle transactions, travel behavior, and land use. Simulation results showed a sharp increase in 

AV ownership since 2040, comprising 36.41% of private vehicle ownership by the year 2050. 
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Furthermore, the VMT from AV will make up around 60% of US VMT in 2050. Of this, half 

will be shared autonomous vehicles. 

Litman (2022) assumed that the Level 5 automation vehicles would become 

commercially available in the late 2020s. In the 2060s, AV sales, fleet and travel market 

penetration rates would be up to 100%, 60% and 80% respectively. Six factors that affect the 

speed of AV deployment were presented in this article. They were speed of technologies 

development, testing and regulatory approval, incremental costs of AVs, consumer travel and 

housing preferences, quality and affordability of AV related service, and public policies. 

The industry, such as professional consulting firms and automotive industry experts, has 

also tried to predict the market penetration rate of CAVs. KPMG (2015) presented an optimistic 

prediction that by the year 2030, the penetration rate of L3 automation vehicle production would 

be 100% and the penetration rate of L4 and L5 automation vehicle production would be 25%. 

Furthermore, the penetration rate of connected vehicle production would reach 100% in 2026. 

IHS Markit (2016) forecasted annual globally sales of AV would reach 21 million in 2035, with 

approximately 76 million vehicles with some degree of autonomy being sold by 2035. In the US, 

the penetration rate of L4 and L5 automation light-duty vehicle sales would reach 5.4% in 2030. 

PTOLEMUS (2017) predicted that L2 vehicles with partial automation features would comprise 

the majority of new passenger car sales in 2030. L4 and L5 passenger cars would be 

commercially available in about 2025 and 2030, respectively.  

 

Figure 2-1 Autonomous Vehicle Sales, Fleet and Travel Projections (Litman, 2022) 
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Table 2-3 Literature Review on the Outlook for Connected and Autonomous Vehicles 

Research 

Entity 
Authors Year Prediction 

Academia 

Lavasani 

et al.  
2016 

The AV sales will be 1.3 million, 36 million and 83.6 

million in 2030, 2040 and 2050, respectively. The AV 

market would be saturated in 2059, and more than 87 

million AVs would be sold. 

Bansal 

and 

Kockelma

n 

2017 

The market penetration rate of vehicles with full driving 

automation would be around 24.8-87.2% in 2045, 

depending on the WTP and vehicle price. 

Talebian 

and 

Mishra 

2018 

Assuming the cost of full automation is $40,000 at 2025, 

this price would have to drop by 15-20% annually to 

reach 100% adoption of CAV in 2050. 

Quarles et 

al. 
2021 

AV will comprise 36.41% of private vehicle ownership 

by the year 2050. The VMT from AV will make up 

around 60% of US VMT in 2050.  

Litman 2022 
In the 2060s, AV sales, fleet and travel market penetration 

rates would be up to 100%, 60% and 80% respectively.  

Industry 

KPMG 2015 

In 2030, the penetration rate of L3 automation vehicle 

production will be 100% and the penetration rate of L4 

and L5 automation vehicle production will be 25%.  

IHS 

Markit 
2016 

Annual globally sales of AV would reach 21 million in 

2035. In the US, the penetration rate of L4 and L5 

automation light-duty vehicle sales will reach 5.4% in 

2030.  

PTOLEM

US 
2017 

L2 vehicles with partial automation features would 

comprise the majority of new passenger cars sales in 

2030. L4 and L5 passenger cars will be commercially 

available in about 2025 and 2030, respectively. 

 

2.3. Intersection Management  

Intersections play a critical role in traffic delays and crashes, as well as traffic emissions. 

Intersection management is a complex problem that has been consistently studied for over 60 

years (Webster, 1958). With the development of CAV technology, more advantages can be 

gained to advance intersection management. 

2.3.1. Fixed-time Signal Control 

Fixed-time signal control is the most traditional and widely used control strategy because 

it is economically competitive and easy to implement. The signal phase and timing of this 
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strategy are predefined and fixed, so it is suitable for intersections with stable traffic demand. 

And the control plans can be predefined for different traffic situations (e.g., peak, and off-peak). 

Generally, the fixed-time signal plans are set based on historic traffic data. Due to the fact that 

traffic demand is unstable most of the time, this strategy is not efficient. Nevertheless, in the 

field of CAV research, many studies focusing on vehicle control still employed a fixed-time 

signal control strategy to simplify the research problem. 

Wu et al. (2010) applied the simulation-based approach to investigate the energy and 

emission impacts of a specific CAV application. This CAV application is was advanced driving 

alert systems (ADAS), and two types of ADAS were proposed in this paper, i.e., stationary 

ADAS and in-vehicle ADAS. Two-phased fixed-time signal control strategy was employed in 

the simulation scenarios. Results demonstrated that proposed ADAS could reduce fuel 

consumption and CO2 emissions by up to 40%. 

Katsaros et al. (2011) proposed a Green Light Optimized Speed Advisory (GLOSA) 

application to control vehicles passing through fixed-time signal intersections. The fuel and 

traffic efficiency of GLOSA were proved by a simulation-based approach. Results suggested that 

the impact on fuel consumption could be noticed when more than 50% vehicles on the road were 

equipped with GLOSA. In the high traffic density scenario, the benefits could be up to 80% 

reduction in stop time and 7% reduction in fuel consumption. 

Ubiergo and Jin (2016) presented a hierarchical green driving strategy based on the V2I 

technology. Signal control with fixed time was set up in simulation scenarios and the 

effectiveness of the proposed strategy was demonstrated. Results showed that by using the 

proposed vehicle control strategy, about 15% in traffic delay and about 8% in fuel consumption 

and GHG emissions would be saved. 

Tang et al. (2018) introduced a speed guidance strategy aimed at eco-driving on a single-

lane road with multiple intersections. Some numerical tests were conducted to investigate the 

effectiveness of the proposed strategy. Results showed that due to the speed guidance strategy, 

total fuel consumption was reduced by 13.92% and 16.45% in two scenarios studied in this paper, 

respectively. Besides, the proposed strategy could also be beneficial to improve traffic efficiency 

in studied scenarios. 

2.3.2. Actuated Signal Control 

Actuated signal control was first proposed by Dunne and Potts (1964). Since then, many 

studies have focused on this topic. This signal control strategy is based on real-time data 

collected from infrastructure-based sensors (e.g., inductive loops, and cameras). It utilizes some 

relatively simple control logic, such as green phase extension, gap out, and max out (Eom and 

Kim, 2020). Compared with the fix-time signal control strategy, the actuated signal control 

strategy can improve the traffic efficiency to some extent. However, this improvement may not 
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necessarily lead to global optimization in the long run since future traffic conditions are not 

considered. CAV technology can provide more accurate real-time traffic conditions when 

compared with traditional sensors. This advantage can be of great benefit to the actuated signal 

control strategy.  

Day and Bullock (2016) statistically analyzed the thresholds for CV market penetration 

rate that could provide feasible traffic data to implement detector-free optimization in signal 

control practice. A simulation-like approach was then applied to investigate the performance of 

the optimized signal on a nine-intersection corridor in Indiana under different market penetration 

rate scenarios. Results suggested that effective offline optimization with a 3-hour window 

required only a 1% CV market penetration rate. Moreover, successful offline optimization 

required only 0.1% penetration rates if using multiple days of data. At least 5% penetration rates 

were needed for online optimization with 15-min windows. 

Day et al. (2017) used vehicle trajectory data collected from a private-sector vendor for 

two corridors comprising 25 signalized intersections as a proxy for CV data. The CV-like data 

had penetration rates between 0.09% and 0.80% on the studied corridors. These data were 

compared with those data obtained from physical detectors on the same corridors and showed 

statistically significant goodness of fit at a 90% confidence level. These data were then used to 

optimize the signal plans and compared to those optimized signal plans based on the data 

collected from physical detectors. Results indicated that these CV-like data could provide good-

quality optimized signal plans even with low penetration rates. 

2.3.3. Adaptive Signal Control 

The adaptive signal control strategy utilizes predicted short-time traffic conditions to 

optimize the signal adjustments. An accurate and comprehensive traffic detection system is 

required to obtain the real-time traffic conditions in a network. Additionally, effective prediction 

algorithms are needed for signal adjustment. These systems (e.g., SCATS, and SCOOT) are 

mature and have been implemented in many cities. In combination with the CAV technology, 

these control strategies will gain more advantages. 

He et al. (2012) introduced a platoon-based optimization model named PAMSCOD to 

control arterial signals to deal with the request of multiple travel modes. To identify the platoon, 

a headway-based platoon recognition algorithm was developed. Considering the platoon 

information, signal status, and priority requests from special vehicles, the signal control problem 

was then formulated into a mixed-integer linear program (MILP). The use of platoon rather than 

individual vehicles made the problem easier to solve by reducing the number of variables. 

Simulation results showed that, under a 40% penetration rate, PAMSCOD could reduce the 

overall traffic delay by about 20-30% compared to the transit signal priority (TSP) control plan 

optimized by SYNCHRO, while the average bus delay increased by only 3%. In addition, the 

throughput could be increased by more than 10% in congested scenarios.  
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Beak et al. (2017) proposed an integrated algorithm that consists of two levels of 

optimization to control the signals on the corridor. The lower level of the model used dynamic 

programming approach to optimize the SPaT in each intersection. At the higher level, a mixed-

integer linear program was developed to solve the optimization problem for the signal offsets 

along the corridor. The coordination constraint for the lower level optimization was the 

optimized offsets derived from the higher level. Simulation experiment was then conducted to 

evaluate the effectiveness of proposed model. Results indicated that, at penetration rates as low 

as 25%, the average delay and the average number of stops in the coordinated route were still 

reduced by 6.3% and 3.4% compared to the actuated coordination control strategy. The network 

performance was more sensitive to the penetration rate than the corridor performance. At the 25% 

penetration rate, the average network delay and the number of stops increased by 0.72% and 

2.56%, respectively, compared to the actuated coordination control strategy. 

Liang et al. (2018) developed a real-time traffic signal optimization algorithm in the 

mixed traffic environment. Platoons were identified with a predetermined headway value using 

the information obtained from CVs approaching the intersections. SPaT was then optimized with 

the objective of allowing these platoons pass through the intersection to minimize total vehicle 

delay. Furthermore, longitudinal trajectory guidance was provided to the leading AV in platoons 

to control travel behaviors and thus minimize the total number of stops. Comparative simulation 

tests indicated that the proposed platoon-based algorithm reduced the computational burden by 

more than 95% with respect to a previous planning-based algorithm. Evaluation tests also 

showed that traffic performance improved with the increase in CAVs penetration rate. However, 

after CAVs in the platoon exceeded 40%, the marginal benefits decreased significantly. 

2.3.4. Signal Vehicle Coupled Control  

Traditionally, signal control and vehicle control have been studied separately, despite the 

fact that signal control and vehicle control interact with each other. By adopting the CAV 

technologies, the ability to exchange information between signals and vehicles in real time 

makes it possible to implement the signal vehicle coupled control (SVCC) strategy. Furthermore, 

when the CAV penetration reaches 100%, autonomous intersection management has the 

potential to eliminate the stops in intersections while ensuring safety of conflicting movements 

(Zhong et al., 2021). 

Li et al. (2014) developed an algorithm for a signalized intersection with single-lane 

through approaches to optimize the signal timing and vehicle trajectories simultaneously based 

on V2V and V2I technologies. Based on basic constraints such as signal cycle, minimum and 

maximum green time, all feasible timing plans were enumerated. Considering the minimum 

average travel time delay (ATTD), the optimal vehicle trajectories were computed, and related 

signal timing plan were identified. For consecutive vehicles entering the communication areas, a 

rolling horizon scheme was developed to perform the optimization process over the time horizon. 
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Two measurements, ATTD and throughput, were used to evaluate the performance of the 

proposed algorithm. Results showed that this algorithm could reduce the ATTD by 16.2-36.9% 

and increase the throughput by 2.7-20.2%, compared to traditional actuated signal control. 

Sun et al. (2017) developed an innovative intersection operation method named as 

Maximum Capacity Intersection Operation Scheme with Signals (MCross). To utilize all 

approaching lanes of a road simultaneously, some unconventional intersection designs were 

introduced, such as continuous flow intersection (CFI) and tandem intersection (TI). CAVs were 

grouped as platoons to control their uninterrupted arrival and were assigned to specific lanes 

according to their destinations. In order to control the SPaT, mobility and safety objectives were 

then considered in formulating the optimization problems as a multi-objective mixed-integer 

non-linear programming (MO-MINLP) problem. Numerical results indicated that the proposed 

method could almost double the throughput of the intersection compared to the conventional 

signal plan. 

Xu et al. (2017) presented an algorithm based on V2I technology to control the SPaT and 

vehicle trajectory simultaneously. The proposed cooperative algorithm consisted of two 

components, which are the roadside signal timing optimization and onboard vehicle speed 

control. The former was used to calculate the optimal signal timing to minimize the travel delay. 

Based on the signal plans determined in the former, the latter aimed to control the 

acceleration/deceleration of the vehicle to minimize the energy consumption. Simulation tests 

were conducted using MATLAD and VISSIM to evaluate the performance of the cooperative 

algorithm. Results indicated that the proposed algorithm could significantly improve traffic 

efficiency and fuel consumption by 19.7% and 23.7%, respectively, compared to the actuated 

signal control algorithm.  

Du et al. (2021) proposed a signal vehicle coupled control algorithm considering the 

mixed traffic environment. The objective of this algorithm was to minimize the total delay as 

well as the fuel consumption. The performance was evaluated and compared to the traditional 

CACC control and GlidePath (a classic eco-driving model). Simulation results showed that 

proposed algorithm could significantly improve the traffic performance at intersections in a 

mixed traffic environment. The algorithm could save 6-14% in fuel consumption and increase 

average speed by 1-5% when the CAV penetration rate was greater than 40%. 

Table 2-4 Literature Review on the Intersection Management with CAV 

Control 

Strategy 
Author Year Findings 

Fixed-time 

Wu et al. 2010 

Proposed ADAS can reduce fuel 

consumption and CO2 emissions by up to 

40%. 

Katsaros et al. 2011 
In the high traffic density scenario, the 

benefits of GLOSA could be up to 80% 
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reduction in stop time and 7% reduction in 

fuel consumption. 

Ubiergo and Jin 2016 

By using the proposed vehicle control 

strategy, about 15% in traffic delay and 

about 8% in fuel consumption and GHG 

emissions would be saved. 

Tang et al. 2018 

The speed guidance strategy could reduce 

total fuel consumption by 13.92% and 

16.45% in the two scenarios studied in this 

paper, respectively.  

Actuated 

Day and 

Bullock 
2016 

Effective offline optimization with a 3-

hour window required only a 1% CV 

market penetration rate. Successful offline 

optimization required only 0.1% 

penetration rates if using multiple days of 

data. At least 5% penetration rates were 

needed for online optimization with 15-

min windows. 

Day et al. 2017 

These CV-like data could provide good-

quality optimized signal plans even with 

low penetration rates between 0.09% and 

0.80%. 

Adaptive 

He et al. 2012 

Under a 40% penetration rate, PAMSCOD 

could reduce the overall traffic delay by 

about 20-30% compared to the transit 

signal priority (TSP) control plan 

optimized by SYNCHRO, while the 

average bus delay increased by only 3%. In 

addition, the throughput could be increased 

by more than 10% in congested scenarios.  

Beak et al.  2017 

At penetration rates as low as 25%, the 

average delay and the average number of 

stops in the coordinated route were still 

reduced by 6.3% and 3.4% compared to 

the actuated coordination control strategy. 

However, the average network delay and 

the number of stops increased by 0.72% 

and 2.56%, respectively. 

Liang et al.  2018 

The proposed platoon-based algorithm 

reduced the computational burden by more 

than 95% with respect to a previous 

planning-based algorithm. The traffic 

performance improved with the increase in 
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CAVs penetration rate. However, after 

CAVs in the platoon exceeded 40%, the 

marginal benefits decreased significantly. 

Signal Vehicle 

Coupled  

Li et al. 2014 

This algorithm could reduce the ATTD by 

16.2-36.9% and increase the throughput by 

2.7-20.2%, compared to traditional 

actuated signal control. 

Sun et al. 2017 

The proposed method could almost double 

the throughput of the intersection 

compared to the conventional signal plan. 

Xu et al. 2017 

The proposed algorithm can significantly 

improve traffic efficiency and fuel 

consumption by 19.7% and 23.7%, 

respectively, compared to the actuated 

signal control algorithm.  

Du et al. 2021 

The algorithm could save 6-14% in fuel 

consumption and increase average speed 

by 1-5% when the CAV penetration rate 

was greater than 40%. 

2.4. Transit Signal Priority 

The main purpose of transit priority is to provide higher quality transit services to the 

public. The implementation measures include the formulation of policies to prioritize public 

transportation, the provision of financial subsidies for public transportation, the construction of 

high accessible public transportation system, and the granting of priority to public transportation 

on the roads. At the micro level, transit priority generally consists of two categories, namely 

facility-based design and signal-based control. Facility-based design measures typically ensure 

transit priority by implementing facilities, including dedicated transit vehicle lanes, bus bays and 

bus bulbs. Signal-based control strategies generally adjust the signal plan to ensure priority for 

transit vehicles at intersections, arterials, or networks (Skabardonis, 2000). This report mainly 

focuses on the control strategies for transit signal priority. 

2.4.1. Conventional Transit Signal Priority 

As early as 1962, the concept of transit signal priority was introduced and tested in 

Washington, D.C. (Chada and Newland, 2002). With the development of Intelligent 

Transportation System (ITS) technology, the TSP has evolved over the decades. Early studies 

focused on extending green time or reducing red time for buses to cross intersections as quickly 

as possible (Finger, 1992; Jacobson and Sheffi, 1981; Ludwick and John, 1975; Seward and 

Taube, 1977). While positive benefits can be identified for buses, competing traffic may 
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experience extra delays. TSP control strategies can be categorized into two types: passive 

priority and active priority (Sunkari et al., 1995). 

2.4.1.1. Passive Priority 

In passive priority, priority is given to buses by predetermining the signal plan based on 

the bus schedule. There are several methods to adjust the signal plans, including adjustment of 

cycle length, splitting phases, areawide timing plans, and metering vehicles (Lin et al., 2014). 

➢ Adjustment of Cycle Length 

In general, a shorter cycle length may reduce the bus delay at intersections since a shorter 

cycle length can serve more buses over time (Balke, 1998). However, there is a tradeoff between 

shorter cycle lengths and reduction in total throughput. 

➢ Splitting Phases 

Splitting the green time into multiple shorter phases can also reduce the bus wait time by 

increasing the chances of a bus arriving at the green time. Applying this method does not require 

shortening the cycle length. However, it may increase the total delay due to the frequent signal 

phase transitions. Moreover, short phases may not provide sufficient green time for pedestrians 

to cross the intersection. Based on simulation analysis, Garrow and Machemehl (1999) found 

that this method can offer more efficiency and reduce the impact on the entire intersection 

compared to adjustment of cycle length. 

➢ Areawide Timing Plans 

Based on the bus travel times, areawide timing plans provide priority for buses by 

controlling signal offsets in a coordinated signal system. This method is difficult to implement 

because of the high fluctuation of bus travel time due to boarding and dropping off passengers at 

bus stops. By using a signal timing optimization program TRANSYT-7F, Skabardonis (2000) 

developed a passive priority strategy to optimize the traffic performance in favor of buses on a 

major arterial with 21 signalized intersections. Simulation results indicated that the proposed 

strategy reduced bus delays by 14%. Stevanovic et al. (2008) combined genetic algorithm (GA) 

and TRANSYT-7F to optimize the offline signal timing plans with transit priority settings. 

Simulations were performed to evaluate the effectiveness of this GA-based signal optimization 

program on an urban corridor with transit operations. Results indicated that the proposed 

program could improve overall traffic performance. 

➢ Metering Vehicles 

This method provides priority to buses by restricting other traffic, such as passenger cars, 

from entering congested areas. While the reliability and efficiency of transit can be guaranteed, 
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other traffic may experience significant delays. This disadvantage makes it difficult to be applied 

in urban road networks. 

The cost of implementing passive priority is low, as no extra hardware or software 

investment is required beyond the normal equipment. However, effective passive priority 

requires a determined transit arrival time or a high transit demand environment. Such strict 

application conditions have limited the research and popularity of this control strategy. 

2.4.1.2. Active Priority 

This control strategy applies TSP only when the transit vehicles are approaching the 

intersection. In the traditional active priority strategy, sensors needed to be installed upstream of 

the intersection to detect the arrival of transit vehicles. In general, there are four types of active 

priority methods that have been most widely used: phase extension, early start, special phase, 

and phase suppression (Sunkari et al., 1995). Each of these methods is detailed below. 

➢ Phase Extension 

This method is applied when a transit vehicle is detected arriving at the intersection at the 

end of a green phase. The green time will be extended until the transit vehicle crosses the 

intersection or the predefined maximum green extension is reached. The maximum green 

extension is determined to prevent excessive disruption to conflicting traffic. 

➢ Early Start 

Early Start (or Red Truncation) is adopted when the transit vehicle is detected arriving at 

the intersection during a red phase. The red phase will be truncated, the priority green phase will 

start earlier in the cycle, and the green time of other non-priority phases may be shortened. This 

method can also be used to clear long queues before the arrival of transit vehicles, so they do not 

have to wait in line. 

➢ Special Phase 

When a priority request is made, a special phase favoring the transit vehicle will be 

inserted into the normal phase sequence. This special phase is generally very short and can be 

inserted at any point in the cycle. 

➢ Phase Suppression 

With Phase Suppression, some non-priority phase with low demand may be skipped to 

facilitate the transit priority phase. 
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In addition, there is a concept of compensation in the active priority signal control 

strategies. Extra green time can be added to the non-priority phases as compensation to keep 

traffic on the non-priority approaches from deteriorating as a result of granting transit priority. 

The methods mentioned previously can be adopted individually or in combination, which is very 

flexible and depends on the application scenario.  

Based on computational complexity, the active priority strategies can be further 

categorized into rule-based priority and model-based priority (Imran et al., 2021). 

2.4.1.2.1 Rule-based Strategy 

This strategy generally grants priority for transit vehicles based on some predefined 

logics, which are developed according to the presence of transit vehicles, headway adherence, 

and duration of lateness. Rule-based strategies are relatively simple and have a relatively low 

computational burden, which makes them widely used in practice.  

Ludwick and John (1975) introduced an unconditional TSP strategy to grant the priority 

based on the presence of transit vehicles at signalized intersections. If a bus was detected arriving 

at the end of the green phase, the green time would be extended by 10-20s to clear the detected 

bus. This strategy was validated via simulation experiments under different traffic 

configurations. Results showed that the proposed strategy with 10s green time extension could 

save 20% of bus travel time while only causing a 7% increase in cross street traffic travel time, 

even with a half-minute headway frequency. However, with the development of public transit, 

the signal control agency may receive multiple priority requests at the same time. A basic policy 

to address this issue is first-come-first-serve (FCFS). The agency responds to the request once at 

a time in sequence and ignores other requests until the served transit vehicle crosses the 

intersection (Francois and Hesham, 2005; Muthuswamy et al., 2007). Meanwhile, alternative 

solutions for multiple request scenarios have been proposed (Kim et al., 2005; Lin et al., 2013; 

Tlig and Bhouri, 2011). 

As the TSP study evolved, researchers found that granting priority to all transit vehicles 

without considering other traffic on the road could result in serious degradation of overall traffic 

performance. In order to mitigate the negative impact of TSP on other traffic, several basic rules 

were introduced.  

1. The performance of non-priority traffic cannot be severely degraded after adopting 

TSP. 

2. On a coordinated arterial, the adoption of TSP cannot disrupt the designed signal 

progressions or cause overflow at the downstream intersections. 

3. The TSP cannot frequently disrupt the phase sequence as the change in the phase 

sequence may confuse drivers. 
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4. Only the transit vehicle that is behind schedule can be granted priority. 

5. For multiple priority requests, the transit vehicle being served should be determined 

based on the delay of each transit vehicle. 

With the development of advanced signal control and traffic sensor technologies, more 

sophisticated active priority control strategies with consideration of overall traffic performance 

emerged in the 1990s. Bowen et al. (1994) first integrated TSP control into the split cycle offset 

optimization technique (SCOOT), a mature adaptive signal control system. Simulation results 

indicated that it is feasible to provide bus priority in SCOOT. After that, TSP control was also 

added into other well-known adaptive signal control systems, such as Sydney coordinated 

adaptive traffic system (SCATS), real-time advanced priority and information delivery (RAPID), 

and balancing adaptive network control method (BALANCE). 

Balke et al. (2000) summarized the limitations of TSP applied along an arterial and 

proposed a comprehensive bus priority control framework to solve this problem. Four basic 

modules were introduced according to the functional requirements, i.e., arrival time prediction 

module, priority assessment module, strategy selection module, and strategy implementation 

module. Simulation tests were performed under three volume-to-capacity levels: 0.5, 0.8, and 

0.95. Results suggested that the proposed TSP approach could significantly reduce the bus travel 

time at all three levels while resulting in only minor decreases in overall traffic delay at moderate 

traffic levels (volume-to-capacity less than 0.9). 

Skabardonis and Geroliminis (2008) proposed an active priority control strategy to grant 

the priority based on real-time estimation of travel time and the bus arrivals along the arterials. 

This strategy tried to minimize the adverse impacts on competing traffics while favoring efficient 

bus operations through aforementioned active priority methods at unsaturated intersections, 

taking into account queuing, headway adherence, remaining green time and progress of bus 

routes. 

2.4.1.2.2 Model-based Strategy 

In a model-based strategy, priority is granted to specific transit vehicles based on a model 

that optimizes certain traffic performance criteria. The most commonly used criteria have been 

passenger delay and vehicle delay. Using the actual traffic conditions as input and minimization 

of passenger/vehicle delays as the objective, the models calculated the optimal signal timing 

plans (Christofa et al., 2013; Christofa and Skabardonis, 2011; Han et al., 2014; Head et al., 

2006; Liao and Davis, 2007; Yu et al., 2017). 

Head et al. (2006) developed an optimization model to handle multiple priority requests 

based on the traditional North America traffic signal controller. The objective of the model was 

to minimize the total delay for all the requesting vehicles (not all vehicles). A relatively simple 
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example was presented in the paper, and the results showed that the proposed model can perform 

better than FCFS in terms of multiple priority requests. 

Christofa and Skabardonis (2011) proposed a real-time, traffic-responsive TSP system 

aimed at managing multiple priority requests from conflicting transit routes while minimizing the 

negative impacts on other traffic. In order to grant priority equitably, the optimization model 

minimized the total person delay by considering the passenger occupancy of both passenger cars 

and transit vehicles in the network. Meanwhile, it can also assign priority to the approaches with 

long queues to reduce the negative impact on other traffic. The simulation test for this system 

was conducted on a complex signalized intersection in Greece. Results showed that the total 

person delay for all passengers and bus passengers was reduced by 9.5% and 35.5%, 

respectively, compared to the vehicle-based optimization results. In the meantime, the delay for 

passengers in other vehicles increased by only 2.8%. 

There are also TSP studies that focused on ensuring the reliability of transit service, such 

as transit schedule adherence. Ma et al. (2010) developed a TSP control strategy with the 

optimization model to minimize the bus headway deviation. Unlike studies that focused on 

minimizing traffic delays, the optimization model in this paper generated the optimal 

combination of two priority strategies (increase and decrease bus delay strategies) to ensure that 

the buses traveling along the corridor adhere to the bus schedule. A corridor with four signalized 

intersections in China was selected as the test bed to evaluate the proposed coordinated and 

conditional bus priority (CCBP) strategy. Compared with the no priority and unconditional 

priority, CCBP could reduce bus headway deviation to guarantee the reliability of bus service 

while not greatly reducing delays of other traffic. 

Instead of considering a single traffic performance criterion, some model-based TSP 

strategies used a weighted summation of various criteria as the optimization objective to reflect 

the weights of different traffic performances (Han et al., 2014; Xu et al., 2019; Ye and Xu, 

2017).  

Han et al. (2014) formulated the adaptive TSP strategy into a quadratic programming 

problem and the global optimization results were solved by MATLAB. The objective function of 

this optimization problem was the sum of the weights of bus delay and average traffic delay, 

where the appropriate weights were determined by sensitivity analysis. In the case study, 

VISSIM was used to evaluate the performance of the proposed strategy on a 7.4 km corridor in 

Edmonton, Alberta. Results showed that the proposed strategy significantly outperformed the 

conventional active TSP strategy in reducing bus delay while balancing the services of the non-

TSP approaches. 

Xu et al. (2019) developed a bi-level optimization model to solve the problem of multiple 

priority requests on the corridors. The upper level controlled the signal phases between every 

two adjacent bus stops to maximize the green bandwidths. The lower level controlled 
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intersections on the corridor, and its optimization objective was to minimize the weighted sum of 

in-bus passenger delay and passenger waiting delay at the downstream stop. The proposed 

optimization model was solved by using hybrid genetic algorithm and tested by simulation 

approach. Three other models were used to conduct the performance comparison, i.e., baseline 

model without TSP, model 1 with regular TSP and the classical coordination, model 2 with low 

level and the classical coordination. Results indicated that proposed model could significantly 

reduce the average delay and stops for buses compared to those three models. Moreover, the 

advantage of the proposed model over other models increased with the increase of traffic 

demand. 

2.4.2. Transit Signal Priority with Connected and Autonomous Vehicle 

Recently, researchers are incorporating CAV technology to advance the TSP control 

strategies. Hill and Garrett (2011) stated that combining CV technology with TSP (TSPCV) is a 

key application of CV technology that will greatly enhance mobility and safety. The USDOT has 

also included TSPCV in its list of high-priority applications and development approach. In 

general, there are three ways to improve the transit signal priority control: enhancing the arrival 

time prediction accuracy, extending the TSP logic library, and improving the priority selection 

algorithm (Hu et al., 2014). Among them, the most fundamental problem has been to accurately 

predict the trajectory of transit vehicle. With the emergence of CAV technology, real-time 

information such as vehicle trajectory can be easily obtained (Yang et al., 2019; Zeng et al., 2015; 

Zeng et al., 2021). 

Zeng et al. (2015) utilized the advantage of CV technology and proposed a TSP control 

optimization model. The objective of this model was to minimize the total person delay during 

the planning period. Since real-time vehicle speed, location, and the number of passengers on 

board were available by using CV technology, it was possible to calculate the person delay for 

every vehicle traveling through the intersection more accurately, which provided a more reliable 

basis for optimization. The performance of proposed model was evaluated using the simulation 

approach. Compared with the signal plans optimized by SYNCHRO, the proposed model 

reduced the bus passenger delay by 39%, 49%, and 30% with one, two, three conflicting bus 

routes, respectively. Meanwhile, person delays in other vehicles decreased by 8-11%. Moreover, 

the proposed model could perform well even at the CV penetration rates as low as 30%. 

Zeng et al. (2021) proposed two types of real-time TSP optimization models, i.e., 

intersection-based optimization model and route-based optimization model. The objective of 

these models was to minimize the timing and progression deviation along the route. For 

simplicity, both models were formulated as mixed integer linear models without considering the 

uncertainty of the bus travel time. Instead, the models were continuously formulated and re-

solved utilizing real-time travel data obtained via CV technology to account for the uncertainty 

of bus travel times. Considering various cycle lengths and different definition of progression 
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deviations, five variants of proposed models were derived and tested in a simulation 

environment. Results suggested that the route-based model could reduce the progression 

deviation by as much as 98%, while causing as little as 5.5% increase in delay to other traffic. In 

contrast, the intersection-based model could not provide as many benefits for buses yet cause 

more negative impacts on other traffic. 

With the explosion of machine learning (ML) and artificial intelligence (AI), some 

researchers have integrated data-driven approaches into TSP control strategies in recent years 

(Ghanim and Abu-Lebdeh, 2015). This trend was facilitated by the availability of real-time big 

data along with the rapid development of CAV technology. 

Chow et al. (2021) refined their previous works (Chow and Li, 2017; Chow et al., 2017) 

using the reinforcement learning (RL) approach to manage the adaptive signal controller to 

improve bus service reliability on the corridor. By approximating the relationship between the 

traffic control variables and the corresponding states and system performances, RL techniques 

can address the curses of dimensionality when solving optimization problems on large networks 

in real time. The proposed RL signal controller was tested using a real-world configuration on a 

corridor with five intersections in London, UK. Results indicated that proposed model could 

significantly reduce the traffic delays and bus progression deviations. Meanwhile, compared with 

the simple linear regression model used in other studies such as (Cai et al., 2009), this model was 

more effective when applied to adaptive traffic controller because of the shorter computational 

time. 

Additionally, with the adoption of CAV technology, SVCC can be implemented to 

improve the TSP control strategy. This kind of control strategy could guide transit vehicles to 

travel at a specific speed while adjusting the SPaT for better optimization (Hu et al., 2015, 2016; 

Seredynski et al., 2015; Wu et al., 2016). 

Hu et al. (2015) proposed a person-delay-based optimization model to control both the 

transit vehicle and signals in a CV environment and to coordinate signals along the corridor. The 

vehicle/signal cooperation provided another perspective for solving the optimization problem. 

The coordination feature took the mobility benefits of all intersections along the corridor into 

consideration. With minimizing average person delay as the objective, the problem was 

formulated as a Binary Mixed Integer Linear Program (BMILP) and solved using the classical 

branch-and-bound approach. In addition, priority was granted only when the bus was behind 

schedule. Both analytical and simulation results indicated that the proposed model 

overperformed the conventional TSP and TSP with CV, and there was no statistically significant 

negative impact when the volume-to-capacity ratio was less than 1.0. 

Wu et al. (2016) developed an optimization model to control not only the signal timings 

and bus speed, but also the dwell time at bus stops. The objective of this model was to minimize 

the average vehicle delays, including bus delays and competing traffic delays at isolated 
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intersections, while in the meantime controlling the buses to pass the intersection without 

stopping. Numerical experiment showed that proposed model outperformed the models without 

TSP, TSP only, and TSP with controlled bus dwell time while causing little negative impact on 

general traffic. Compared with the three base models, the proposed model could reduce the 

average delay by 54%, 24.2%, and 32.6% and the average number of stops by 88.2%, 83.6%, 

and 72.9%, respectively. Sensitivity analyses demonstrated that the proposed model has the 

potential for real world application, as it was effective in different traffic conditions. 

 

Table 2-5 Literature Review on Transit Signal Priority  

TSP Type Author Year 
Control 

Object 

Research 

Object 

Performance 

Measurements 

Passive 

TSP 

Jacobson & 

Sheffi 
1981 Signal Intersection Total person delay 

Active 

TSP 
Bowen et al 1994 Signal Network 

Total passenger 

delay 

Passive 

TSP 
Skabardonis 2000 Signal Corridor Bus delay 

Active 

TSP 
Balke et al. 2000 Signal Corridor 

Bus travel time; 

Total delay; 

Approach delay 

Active 

TSP 
Kim et al. 2005 Signal Network 

Travel time; Bus 

headway; Speed 

Active 

TSP 
Head et al. 2006 Signal Intersection Total delay 

Active 

TSP 

Muthuswamy et 

al. 
2007 Signal Corridor Travel time 

Passive 

TSP 
Stevanovic et al. 2008 Signal Corridor 

Person delay; Bus 

delay; Total delay; 

Total travel time; 

Number of stops; 

Throughput 

Active 

TSP 

Skabardonis & 

Geroliminis 
2008 Signal Corridor 

Average bus delay; 

Average vehicle 

delay; Average 

person delay 

Active 

TSP 
Tlig & Bhouri 2011 Signal Network 

Total bus delay; 

Headway deviation 

Active 

TSP 

Christofa & 

Skabardonis 
2011 Signal Intersection 

Total person delay; 

Bus passenger 

delay; Auto 
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passenger delay 

Active 

TSP 
Lin et al. 2013 Signal Corridor 

Headway deviation; 

Bus passenger 

delay; Total person 

delay 

Active 

TSP 
Han et al. 2014 Signal Corridor 

Weighted sum of 

bus delay and 

average traffic delay 

TSP with 

CAV 
Zeng et al. 2015 Signal Intersection Total person delay 

TSP with 

CAV 
Hu et al. 2015 

Signal and 

Bus 
Corridor 

Bus delay; Total 

delay 

TSP with 

CAV 
Wu et al. 2016 

Signal and 

Bus 
Intersection 

Average bus delay; 

Average number of 

bus stops 

Active 

TSP 
Xu et al. 2019 Signal Corridor 

Weighted sum of in-

bus passenger delay 

and passenger 

waiting delay at the 

downstream stop 

TSP with 

CAV 
Zeng et al. 2021 Signal Corridor 

Progression 

deviation; Bus 

delay; Passenger car 

delay 

TSP with 

CAV 
Chow et al. 2021 Signal Corridor 

Total delay; 

Schedule deviation; 

Headway deviation 

 

2.5. Summary 

A comprehensive review and synthesis of the current state-of-the-art and state-of-the-

practice of historical research related to connected and autonomous vehicle technology, 

intersection management, and trasit signal priority control have been discussed and presented in 

the preceding sections. This is intended to provide a solid reference and assistance for 

formulating analysis methods for the impact of connected and autonomous vehicles on signalized 

intersections with transit signal priority and for developing effective simulation strategies for 

future tasks. 
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Chapter 3. Methodology 

Since Foy et al. (1992) introduced genetic algorithm (GA) to optimize the SPaT, this approach 

has been extensively studied and has become one of the classical optimization methods in the 

area. Noting that many more sophisticated optimization methods have been proposed over the 

years, this research uses GA as a representative or baseline for these methods. A list of variables 

used in this paper is summarized in Table 3-1. 

Table 3-1 List of Important Variables 

Notation Description 

Pc Probability of crossover 

Pm Probability of mutation 

a Private car index 

b Bus index 

i Vehicle index 

j Phase index 

k Cycle index 

m Travel direction index 

A Current car set at each decision time 

B Current bus set at each decision time 

oa Passenger occupancy of car a 

ob Passenger occupancy of bus b 

da,k Delay of car a in cycle k 

db,k Delay of bus b in cycle k 

ti Time for vehicle i to reach the stop line 

Li Distance to stop line for vehicle i 

hi saturation headway for vehicle i 

li Vehicle length for vehicle i 

gapi Minimum gap when vehicle i is stopped 

di Delay for vehicle i 

gj Green time for phase j 

wi Cumulative waiting time for vehicle i 

tj,k Time between the start of optimization and the start of phase j in cycle k 

tj,k+1 Time between the start of optimization and the start of phase j in cycle k+1 

vi Free-flow speed for vehicle i 

qm Maximum queue length in travel direction m 
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3.1. Genetic Algorithm 

GA is a meta-heuristic algorithm inspired by the natural selection process to efficiently 

search for optimal or near-optimal solutions (Holland, 1992). A genetic algorithm consisting of 

three basic components is used in this project.  

3.1.1. Encoding and Decoding 

Encoding refers to the use of chromosomes to symbolize traffic signal timing decision 

variables. Decoding is a reverse process of encoding, which refers to the process of translating 

these decision variables from chromosomes. Decision variables are the duration of green time for 

each phase. 

3.1.2. Fitness/Evaluation 

Each chromosome is decoded and sent to the fitness function to obtain the corresponding 

fitness value for the selection process. Elitism is a widely used selection process which is 

adopted in this project. For the problem being considered here, the objective of the fitness 

function is to minimize the total person delay at the intersection. The calculation method of the 

total person delay is described in detail in the next section. 

3.1.3. Reproduction, Crossover, and Mutation 

These three manipulations are used to produce new generations. Reproduction process 

copies elite chromosomes to produce new generations. During crossover, the elite chromosomes 

exchange their genetic materials with a predefined probability Pc. The mutation is conducted by 

selecting a random bit on the offspring’s chromosome and then changing the value. The 

likelihood of mutation occurring on a given chromosome is determined by the probability Pm 

(Teklu et al., 2007). 

3.2. Objective Function 

The objective of this study is to minimize the total person delay of an isolated 

intersection. The objective function is given in equation 1.  

min∑ 𝑜𝑎𝑑𝑎,𝑘 + ∑ 𝑜𝑏
𝐵
𝑏=1 𝑑𝑏,𝑘

𝐴
𝑎=1                                                      (1) 

The passenger occupancy of each vehicle can be obtained via CV technology. The most 

important part of this function is the accurate estimation of vehicle delay. Existing studies mainly 

used three kinds of approach to estimate the vehicle delay, i.e., Highway Capacity Manual 

(HCM) approach (Ghanim and Abu-Lebdeh, 2015), Webster’s delay formula (Christofa et al., 

2013), and individual vehicle trajectory-based delay estimation models (Hu et al., 2015; Yang et 
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al., 2019; Zeng et al., 2015). The last type is a more delicate estimation approach but requires a 

large amount of real-time traffic data. However, in CV environment, these data are easily 

available.  

In this research, a vehicle delay estimation model is developed accordingly. A simplified 

delay calculation method is used in this model. During the delay calculation process, not only the 

current cycle but also the next cycle is considered. In this way, the probability of myopic 

optimization results will be reduced. The individual vehicle delay is categorized into two types: 

(a) delay of vehicles that are already stopped and queuing before the stop line at the optimization 

time step, and (b) delay of vehicles that are still approaching the intersection at the optimization 

time step.  

3.2.1. Queuing Delay 

The queuing delay is calculated as follows. Based on the position of queuing, stopped 

vehicles can be divided into two groups: 

Queuing 1. The vehicle i that can leave the stop line during the corresponding green time 

of the current cycle k. 

Queuing 2. The vehicle i that cannot leave the stop line during the corresponding green 

time of the current cycle k. 

First of all, the time for stopped vehicle i to reach stop line is calculated with equation 2. 

𝑡𝑖 = (𝐿𝑖 ∗ ℎ𝑖) (𝑙𝑖 + 𝑔𝑎𝑝𝑖)⁄                                                         (2) 

The delay for vehicles in Queuing 1 can be calculated with equation 3. 

𝑑𝑖 = 𝑤𝑖 + 𝑡𝑖 + 𝑡𝑗,𝑘 − 𝐿𝑖/𝑣𝑖                                                      (3) 

The delay for vehicles in Queuing 2 can be calculated with equation 4. 

𝑑𝑖 = 𝑤𝑖 + 𝑡𝑖 + 𝑡𝑗,𝑘+1 − 𝑔𝑗 − 𝐿𝑖/𝑣𝑖                                              (4) 

3.2.2. Delay for Approaching Vehicles 

Based on the time that vehicle i arrives at the stop line, the delay for approaching vehicles 

can be divided into three groups. The arrival time of vehicle i is calculated by considering the 

vehicle speed and the maximum queue length for the corresponding travel direction. 

Arrival 1. The vehicle i that reaches the stop line before the corresponding green start of 

the current cycle k. 
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Arrival 2. The vehicle i that reaches the stop line during the corresponding green start of 

the current cycle k. 

Arrival 3. The vehicle i that reaches the stop line after the corresponding green end of the 

current cycle k. 

For vehicles in Arrival 1, the delay can be calculated with equation 5. 

𝑑𝑖 = 𝑡𝑗,𝑘 + 𝑞𝑚 − 𝑡𝑖                                                         (5) 

For vehicles in Arrival 2, the delay is zero. 

For vehicles in Arrival 3, the delay can be calculated with equation 6. 

𝑑𝑖 = 𝑡𝑗,𝑘+1 + 𝑞𝑚 − 𝑡𝑖                                                       (6) 

3.3. Control Logic 

This research uses Simulation of Urban MObility (SUMO) as the simulation platform to 

evaluate the traffic performance of proposed TSPCV control strategies. SUMO is an open-source 

software and one can use Python to control the simulation loop through Traffic Control Interface 

(TraCI) provided by SUMO. The control logic is presented in Figure 3-1. The control horizon is 

set for every half cycle so as to capture vehicle trajectory data as comprehensively as possible 

during the control process. 

 

Figure 3-1 Flowchart for Optimization Process and Simulation Environment Integration 
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The optimization and signal control process is triggered at the end of each half cycle. 

Through TraCI, all the required data are obtained from the simulation environment, including 

vehicle locations, speeds, types, and signal timing parameters, etc. These data are passed along to 

the GA optimizer. The optimizer then finds an optimal or near-optimal signal timing plan by 

minimizing the total person delay calculated based on the delay estimation model. The optimized 

signal timing solution is returned to the simulation environment and used to control the signal 

phase and timing in the next half cycle. This process is iterated every half cycle until the end of 

the simulation experiment. 
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Chapter 4. Simulation Framework 

4.1. Traffic Configuration 

The test intersection is a real-world four-approach intersection of Central Avenue and 

Eastway Drive located in Charlotte, North Carolina, as shown in Figure 4-1. Each approach has 

four lanes. On the south-north street, there are two lanes for through traffic, one for left-turn 

traffic, and one for right-turn traffic. On the east-west street, there are two lanes for left-turn 

traffic, one for through traffic, and one for both through and right-turn traffic. Bus lines travel 

southbound and northbound. The bus arrival frequency depends on the scenario settings. The 

signal control strategy is varied in different scenarios, which will be described in the next 

section. The yellow time is 3 seconds and the red clearance time is 2 seconds. The traffic volume 

for each travel direction is listed in Table 4-1. The speed limit is 45 mph for the south-north 

street and 35 mph for the east-west street. 

 

Figure 4-1 Layout for the Test Intersection 

Table 4-1Traffic Volume of Each Travel Direction, veh/h 

Time  

period 

SB WB NB EB 

R T L R T L R T L R T L 

PM 

Peak 

176 793 88 68 341 206 325 883 180 193 547 246 

Off-

peak 

152 707 36 40 319 235 122 541 138 128 197 91 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; 

T=Through, L=Left turn. 

4.2. Simulation Settings 

The car following model used in the simulation is the IDM (Treiber et al., 2000), a model 

that has been widely used to simulate the CVs and also performs well for simulating human 
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driving vehicles (HDVs). For simplicity, the passenger occupancy of the car is assumed to be 1.5 

passengers per vehicle. Bus occupancy is also set to be constant but varies depending on the 

experimental settings. Based on different signal control strategies, five basic simulation 

environments are established. More specific scenarios are then developed taking into account the 

traffic demand, bus occupancy, and CV market penetration rate. Each scenario runs twenty times 

with a simulation time of one hour. The basic simulation environments and the corresponding 

signal control strategies are detailed as follows. 

 

         (a) Ring-and-barrier Phase Program                          (b) Stage-based Phase Program 

Figure 4-2 Signal Phase Program Used in the Research 

Environment 1. Actuated Signal Control without TSP (NTSP) 

In this environment, the signal control strategy is fully actuated signal control. A typical 

National Electrical Manufacturers Association (NEMA) phase diagram is adopted, with the 

phase sequence shown in Figure 4-2(a). The minimum and maximum green time are set in 

accordance with the signal controller timing plan obtained from the Charlotte Department of 

Transportation. The buses and cars are HDVs. 

Environment 2. Actuated Signal Control with TSP Using the Traditional Detector (ATSP) 

In this environment, the bus detectors are placed 100 meters before the stop line in the 

south and north approaches. When there is a bus cross the detector, the signal will be switched to 

the corresponding phase. Otherwise, the SPaT is the same as that in Environment 2. The buses 

and cars are HDVs. 

Environment 3. Actuated Signal Control with TSP Using CV (ATSP-CV) 

Buses in this environment are CVs and no bus detector is installed. When a bus 

approaches the intersection within 100 meters, the signal will be switched to the corresponding 

phase. Otherwise, the SPaT is the same as that in Environment 2. The cars are HDVs. 

Environment 4. Optimized Signal Control with TSP Using GA (TSP-GA) 
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The stage-based signal phase shown in Figure 4-2(b) is adopted in the GA optimization. 

The decision variable is the duration of green time for each phase. The minimum green time for 

the left turn phases is 6 seconds and for the through phases it is 12 seconds. The maximum green 

time is 20 seconds for the left turn phases and 35 seconds for the through phases. Accordingly, 

the cycle length ranges from 56 seconds to 130 seconds. Buses are CVs, and the MPR of cars 

varies from 20% to 100% in 20% intervals. 

For the parameters related to the genetic algorithm, the maximum generation is set to 

250, the population size is 20, the probability of mutation is 0.7, and the probability of crossover 

is 0.7. Elitism is applied to retain the best solution in a generation. 
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Chapter 5. Results and Discussions 

The average delay is used as the performance index to evaluate the traffic performance of each 

scenario. 

5.1. Performance Evaluation 

5.1.1. Average Delay in Major Scenarios 

The performance of four major scenarios with different signal control strategies are 

compared. The performance of NTSP is used as the baseline. In these scenarios, the bus 

occupancy is 30 passengers per vehicle, and the bus arrival frequency for southbound and 

northbound is five minutes.  

As shown in Table 5-1, the average bus delays for both ATSP and ATSP-CV scenarios 

are very low. Compared to the baseline, the average bus delays for these two scenarios during the 

peak hour decrease by 54.31% and 63.36%, respectively. Meanwhile, the average car delays 

during the peak hour increase by 7.54% in ATSP scenario and 2.46% in ATSP-CV scenario. A 

similar trend can be observed under the off-peak condition, with even better performances in 

terms of the average car delay. In addition, the comparison of the two actuated control strategies 

with TSP indicates that the CV technology offers a better performance than just using traditional 

fixed detectors to sense bus arrivals. As for the TSP-GA scenario, the average bus delay 

decreases by 24.50% and the average car delay increases by 2.58% during the peak hour. The 

average bus delay is reduced by 23.50% and the average car delay increases by 8.88% during the 

off-peak hour. These results shows that the GA optimization with TSP performs better in peak 

hours than in off-peak hours.  

Table 5-1 Comparison of Average Vehicle Delay in Major Scenarios 

Period Vehicle Type NTSP ATSP ATSP-CV TSP-GA 

Peak Bus Average Delay (s) 40.73 18.61 14.92 30.75 

Delay Change 
 

-54.31% -63.36% -24.50% 

Car Average Delay (s) 35.36 38.02 36.23 36.27 

Delay Change 
 

7.54% 2.46% 2.58% 

Off  

Peak 

Bus 

 

Average Delay (s) 28.93 13.73 11.11 22.13 

Delay Change  -52.52% -61.60% -23.50% 

Car Average Delay (s) 25.66 26.00 25.40 27.94 

Delay Change 
 

1.33% -1.02% 8.88% 

 

The detailed impacts for these four major control strategies on average car delays of each 

travel direction are shown in Figure 5-1. Compared to the baseline scenarios, the average car 
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delays in ATSP and ATSP-CV scenarios increase in all conflicting travel directions. Eastbound 

through is the direction with the largest increase in terms of the average car delay, increasing by 

49.56% in ATSP scenario and 25.72% in ATSP-CV scenario during the peak hour. During the 

off-peak hour, average car delays in conflicting directions still increase for the ATSP and ATSP-

CV scenarios, but by a smaller percentage than during the peak hour. The increases for ATSP 

and ATSP-CV range from 6% to 16% and 1% to 8%, respectively. In the TSP-GA scenario, 

compared to the baseline during the peak hour, average car delays are reduced by 15-20% in 

almost all left turn directions, except for a 44.37% increase in the northbound left turn. This is 

understandable, as the traffic demand for northbound left turn is more than twice that of 

southbound left turn. As for the through traffic, the average car delay is reduced by 15.50% in 

southbound and increases by 26.38% in eastbound. The average car delays of other through 

traffic remain roughly the same as the baseline. In the TSP-GA scenario during the off-peak 

hour, average car delays decrease only in southbound through, southbound left, and eastbound 

left. The average car delays of other travel directions increase by ranging from about 12% to 

30%.  

These results imply that under high traffic demand conditions, GA optimization with TSP 

control strategy has the potential to provide conditional priority to buses while minimizing the 

negative impact on conflicting traffics. Under low traffic demand conditions, fully actuated 

signal control with TSP using CV technology has the best performance in terms of average 

delay. Note that the longer the cycle length, the larger the average delay will be. The actuated 

control strategy used in this study is very flexible since we only focused on isolated intersections. 

When it comes to coordinated actuated signal control scenarios, things can change significantly 

because the cycle length will be fixed. For example, according to the Charlotte Department of 

Transportation, at this test intersection, the cycle length is 130 seconds in order to achieve 

coordinated signal control.  

 



 

 

38 

 

 

 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; T=Through, L=Left 

turn. 

Figure 5-1 Average Car Delays of Each Travel Direction in Major Scenarios 
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5.1.2. Average Delay in Mixed Traffic Scenarios 

The impacts of different CV market penetration rates on GA optimization with TSP 

control strategy is investigated. Five scenarios are designed for each of the peak hour and off-

peak hour traffic demand conditions, with MPRs ranging from 20% to 100% and at intervals of 

20%. Other scenario settings are the same as before. Figure 5-2 shows that, as the MPR 

increases, the average delays of both buses and cars decrease. During the peak hour, the average 

bus delay is less than the baseline, even with the MPR being as low as 20%. During the off-peak 

hour, the average bus delay is less than the baseline when the MPR reaches 40%. These results 

suggest that the proposed algorithm can provide priority to buses at low rates of CV market 

penetration and can be more effective in high traffic demand conditions. 

 

Figure 5-2 Average Delays in Different CV Market Penetration Rates 
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5.2. Sensitivity Analyses 

5.2.1. Bus Occupancy 

The bus occupancy can be easily obtained via CV technology and is varied in real-world. 

This study investigates the sensitivity of proposed GA optimization algorithm to the bus 

occupancy. Except for bus occupancy, other scenario settings are the same as the major TSP-GA 

scenario. As shown in Figure 5-3, during the off-peak hour, as the bus occupancy increases, the 

average bus delay decreases. However, during the peak hour, the proposed algorithm is not 

sensitive to the bus occupancy after it is greater than 10 passengers per vehicle. One possible 

explanation is that it is difficult to reduce the average bus delay due to the high traffic volumes. 

 

Figure 5-3 Sensitivity of GA Optimization with TSP to Bus Occupancy 
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5.2.2. Bus Arrival Frequency 

Bus arrival frequency is a possible important factor that can influence the effectiveness of 

the GA optimization algorithm. Based on two traffic demand conditions, four different bus 

arrival frequencies are investigated in this research, i.e., 2 minutes, 5 minutes, 10 minutes, and 15 

minutes. Other scenario settings are the same as the major TSP-GA scenario. As shown in Figure 

5-4, the average delays for both buses and cars decrease as the frequency of bus arrivals 

decreases. Compared with the 2-minute arrival frequency scenarios, the average delays for buses 

and cars in the 15-minute scenarios are reduced by about 20% and 5%, respectively, in both peak 

and the off-peak conditions. The reduction in the average bus delays is much larger than the 

average car delays. This is because the number of cars is much higher compared to the number of 

buses and therefore, changes in the frequency of bus arrivals have a smaller impact on the 

average car delay. 

 
Figure 5-4 Sensitivity of GA Optimization with TSP to Bus Arrival Frequency  
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Chapter 6. Conclusions 

This study investigates two typical signal control strategies that apply CV technology to 

provide priority to transit vehicles at signalized intersections, which are actuated TSP with CV 

and optimized TSP with CV. The optimization algorithm used in this study is GA, a classical 

algorithm in the field of signal optimization. A real-world intersection is modeled in SUMO to 

evaluate the performance of proposed control strategies. The results are compared with fully 

actuated signal control strategies with and without TSP. The impacts of MPR, bus occupancy, 

and bus arrival frequency on the performance of proposed optimization algorithm are also 

investigated.  

Results indicate that the proposed GA optimization control strategy can reduce the 

average bus delay by 24.50% while minimizing the adverse impact on competing traffic under 

high traffic demand conditions. Fully actuated control with TSP using CV has the best 

performance in terms of average delay under low traffic demand conditions. In addition, the fully 

actuated with TSP using CV control strategy only requires the bus to be equipped with CV 

technology, which is easily achieved. The proposed optimization control algorithm can provide 

certain priority to buses even at low rates of CV market penetration. The sensitivity analysis 

shows that the proposed optimization control algorithm is not very sensitive to both the bus 

occupancy and bus arrival frequency. This is useful because in the real-world, bus occupancy 

and arrival frequency are quite random. 

In the future, progresses can be achieved by (a) considering more comprehensive traffic 

conditions, e.g., multiple transit priority requests, and under oversaturated traffic flow situations, 

(b) expanding the control object, e.g., along a corridor or even throughout the network, (c) 

developing more advanced control algorithms, such as integrating data-driven approaches into 

control strategies. 
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Appendix 

Appendix 1 Average Delay in Each Vehicle Type and in Each Direction in Major Scenarios (second) 

Period 
Control 

Strategy 
Bus Car 

SB WB NB EB 

R T L R T L R T L R T L 

Peak 

NTSP 40.73 35.36 8.71 37.71 50.45 30.03 34.22 47.98 10.57 36.03 48.06 35.10 37.98 47.91 

ATSP 18.61 38.02 8.64 32.97 58.53 35.64 40.71 50.30 10.33 31.54 49.41 54.79 56.81 50.38 

ATSP-

CV 
14.92 36.23 8.81 33.68 56.50 32.74 38.18 48.28 10.43 32.76 49.69 44.60 47.75 48.18 

TSP-GA 30.75 36.27 11.76 31.86 42.18 28.09 33.70 37.90 14.40 37.09 69.38 44.50 48.00 39.92 

Off 

Peak 

NTSP 28.93 25.66 8.77 28.74 37.57 21.19 25.54 35.06 7.11 20.84 36.64 21.26 27.10 35.44 

ATSP 13.73 26.00 8.67 26.00 43.63 23.05 28.32 40.11 6.96 18.55 38.96 23.14 30.12 40.83 

ATSP-

CV 
11.11 25.40 8.77 27.14 40.77 21.48 25.93 36.62 6.98 19.55 37.06 21.73 27.88 37.84 

TSP-GA 22.13 27.94 11.04 26.61 31.94 27.68 33.53 39.25 8.73 23.84 44.81 23.97 30.31 33.25 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; T=Through, L=Left turn. 
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